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Abstract

The SIAR model with symptomatic and asymptomatic individuals is introduced. The stability
of equilibrium points are analyzed with the basic reproduction number (R0). The Disease-Free
Equilibrium (DFE) is globally stable whenR0 < 1, and the Endemic Equilibrium (EE) is locally
asymptotically stable when R0 > 1. For case α = 0, the global stability of EE is analyzed by
using a geometric approach for the global stability. The Sensitivity Analysis (SA) of R0 and EE
with parameters of influenza A (H1N1) are presented. The most sensitive parameter for R0 is
the transmission rate to symptomatic infected individuals. The sensitivity of EE shows that the
recovery rate of symptomatic and asymptomatic individuals have an effect on reducing patients
when the recovery rate are increased. Therefore, controlling the spread of disease and reducing
the treatment time can reduce the number of infected individuals. Simulations results by using
numerical method are used to confirm the stability of the model. Further, this model is applied
to predict the trend of influenza A cases of (H1N1) in Thailand during 2016− 2022.
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1 Introduction

Researchers employ systems of differential equations to precisely describe the behavior of nat-
ural phenomena. Since these models can predict the number of infected individuals, they play
a vital role in epidemiology for investigation of disease spread and managing outbreaks. In epi-
demiology, there are several types of mathematical models depending on compartments and their
interactions. For example, Xuhui et al. [33] constructed the SEIAR model to forecast and repro-
duce influenza A (H1N1) dynamics in Guangdong China. Siyu et al. [19] used the SVEIR model
to fit real data on tuberculosis in China. Ratti and Kalra [31] developed amodel that examines the
interaction and dynamics between malaria and rotavirus, while also determining the sensitivity
indices of the impact parameters. Haque et al. [10] constructed a mathematical model to investi-
gate the transmission dynamics of Marburg virus disease. Cooper et al. [8] used the SIR model to
predict the COVID-19 spreading and compare it with real data in 2020. Annas et al. [3] used the
SEIR model with vaccination and isolation to study the effect of vaccine COVID-19 in Indonesia.
Samuel et al. [27] used the SEIR model to predict the dynamics of COVID-19. Additionally, they
considered the presence of pathogens in the environment and the impact of interventions.

The influenza A virus started its transmission in the North America in April 2009 and rapidly
spread aroundworldwide. In June 2009, theWorldHealthOrganization classified it as a pandemic
after they discovered confirmed cases in 74 countries [35]. In Thailand [29], the first cases of the
pandemic were in May 2009, followed by a widespread outbreak in June. According to the 2009
surveillance report, there were 30, 956 cases, which corresponds to a prevalence rate of 48.78 per
thousand people. There were 157 deaths, corresponding to a death rate of 0.31 per one thousand.
Additionally, there was a 0.64 induced death rate. The majority of cases occurred between June
and September, which coincides with the rainy season.

The weekly disease forecast from the Department of Disease Control in Thailand [23, 26] re-
ports that there is an outbreak of influenza A (H1N1) in Thailand, where most patients are chil-
dren aged 0− 15 years. Influenza A viruses are the only influenza viruses known to cause global
epidemics of flu disease. Especially, influenza A (H1N1) virus that emerged in the spring of 2009
and cause a flu pandemic which continued to circulate seasonally [5]. Influenza has undergone
extensive study and has been extensively researched. Mohamed et al. [1] used a fractional order
model, which is greater to an integer-order model, to analyze the progress of influenza in Saudi
Arabia over a 40 weeks period in 2017. Faizunneasa [13] used optimal control to find strategies for
reducing the exposed and infected individuals in the influenza model with preventive measures
and treatment interventions. Jagan [11] performed a study on the impact of vaccination on the
H1N1 (A) model and determined that it is a very effective approach for minimizing the propaga-
tion of the virus. Kim et al. [14] executed an investigation on the influence of the media on the
flu epidemic by analyzing data from the 2009 influenza in Korea. The results demonstrated an
association between media influence and influenza, indicating that increased exposure to media
lead to a decrease in the number of cases. Kanyiri et al. [12] examined the influenza model in
relation to the emergence of drugs resistance. The model’s findings indicate that vaccination ef-
fectively minimizes the transmission of the illness. Furthermore, using social distancingmeasures
may serve as a control tool for reducing the occurrence of mutations in the wild-type strain.

From diagnosis, influenza patients can spread the virus 1 day before symptoms appear and
continue to spread the virus 5 − 7 days after signs appear in adults. Young children and people
with weakened immune systems may be an infectious period of more than 7 days. People who
have been exposed to the influenza virus but are asymptomatic might still transmit it during that
period [6, 25]. Therefore, adding a population of asymptomatic infected individuals makes the
model more consistent with reality.
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In mathematical models, the SA is a frequently usedmethod for assessing the impact of factors
on the desired outcome. It is used to identify the factors that have the most significant influence
on an epidemic in order to prevent an outbreak. Sensitivity analysis of the epidemic models has
been used in several studies. For example, Nakul et al. [7] used SA to evaluate the compara-
tive significance of model parameters in relation to the prevalence and transmission of malaria.
Samsuzzoha et al. [32] used sensitivity analysis to find parameters that have the greatest effect
on increasing R0 and endemic equilibrium, which reduced the spread of the influenza epidemic.
Sensitivity analysis was used by Rangkuti et al. [30] to find out how different factors affect the
value ofR0 and the endemic equilibrium of the COVID-19 SEIR model. Al-Zahrani et al. [2] used
sensitivity analysis with the SITR model to forecast the COVID-19 transmission. Abdul et al. [22]
used sensitivity analysis for the COVID-19 model with quarantine and vaccination and showed
that transmission of disease can be controlled by raising awareness of quarantine and vaccination
in the population.

In this research, a SIARmodel with symptomatic and asymptomatic infected individuals with
constant immigration is introduced. Further, a transmission rate from asymptomatic to symp-
tomatic class is added to themodel. Global stability of the DFE is analyzed. A geometric approach
for the global stability [20] is applied for analyzing the global stability of the endemic equilibrium.
Sensitivity analysis with parameters for influenza A (H1N1) in Thailand is used to determine the
most sensitive parameter for the basic reproduction number and the prevalence of the EE in order
to find preventing or controlling measure for influenza A (H1N1) in the future.

2 Model Formulation

In this research, we introduce the SIR model, in which infected individuals are divided into
two groups: symptomatic and asymptomatic. Thus the model consist of four types of individuals
at time t: susceptible individuals (S(t)), symptomatic infected individuals (I(t)), asymptomatic
infected and partially infected individuals (A(t)) and recovered individuals (R(t)). Further, the
total of individuals is N(t) = S(t) + I(t) +A(t) +R(t).

The number of susceptible is increased by birth or immigration, occurring at a recruitment
rate denoted as Π. The number of these individuals decreases by natural death rate denoted as
µ. It is hypothesized that susceptible individuals may get infected by entering into contact with
symptomatic and asymptomatic individuals at rates denoted as βI and βA, respectively. Thus, the
transmission rate to susceptible individuals is given by,

βII + βAA

N
,

where βI and βA represent the mean number of interactions between symptomatic and asymp-
tomatic infected individuals and susceptible individuals that are essential to disease transmission
per infected individual per unit of time. Changing the number of susceptible individuals versus
the time represented by,

dS

dt
= Π− βII + βAA

N
S − µS. (1)

The number of symptomatic infected individuals increased by a rate of p(βII + βAA)/N from
contact between susceptible and infected individuals, where p is the proportion of susceptible
individuals who progress to become symptomatic infected individuals. Further, I increases when
asymptomatic individuals A turn symptomatic at rate σ. In addition, the variable I diminishes
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due to recovery, natural death, and disease-induced death with rates γI , µ, and α, respectively.
This gives,

dI

dt
= p

βII + βAA

N
S + σA− (µ+ γI + α)I. (2)

The number of asymptomatic infected individuals A increases by infection of susceptible individ-
uals at rate (1−p)(βII+βAA)/N . Moreover, A decreases via natural death, recovery, and turning
into symptomatic infected at rates µ, γA, and σ, respectively. Differential equations explain the
relationship between the rate of change of the number of asymptomatic individuals, given by,

dA

dt
= (1− p)

βII + βAA

N
S − (µ+ γA + σ)A. (3)

Finally, we assume that all individuals acquire permanent immunity after recovery. The number
of recovered individuals, denoted asR, is increased by the rate at which symptomatic and asymp-
tomatic infected individuals recovered, represented by γI and γA, respectively. It decreases via
natural death at rate µ, so that,

dR

dt
= γII + γAA− µR. (4)

All variables in this model, designed to observe human behavior, are non-negative. Further, all
parameters are positive. In addition, the sum of (1)−(4) is determined,

dN

dt
= Π− µN − αI. (5)

S

µS

I

αI

µI

µA

A

R

µR

p (βII+βAA)S
N

Π

(1− p) (βII+βAA)S
N

γAA

γII

σA

Figure 1: Diagram of SIAR model.

The transmission dynamics of the model are obvious, as shown in Figure 1. Thus, the system
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of differential equations for this research is,

dS

dt
= Π− βII + βAA

N
S − µS,

dI

dt
= p

βII + βAA

N
S + σA− (µ+ γI + α)I,

dA

dt
= (1− p)

βII + βAA

N
S − (µ+ γA + σ)A,

dR

dt
= γII + γAA− µR.

(6)

The following basic property holds.

Lemma 2.1. The closed set,

Ω =

{
(S, I, A,R) ∈ R

4
+ : 0 ≤ S + I +A+R ≤ Π

µ

}
,

is positively invariant.

Proof. The positive invariant set of the Model (6) is analyzed. Consider (5), dN/dt ≤ Π − µN , it
follows that dN/dt ≤ 0 if N ≥ Π/µ. Thus,

N(t) ≤ Π

µ
+

[
N(0)− Π

µ

]
e−µt.

It can be observed that N(t) ≤ Π/µ is the case if N(0) ≤ Π/µ and N → Π/µ for all t → ∞.
Therefore, the area Ω is positively invariant. Moreover, if the initial value N(0) is greater than
Π/µ, then the solution either reaches the region Ω within a limited amount of time or the value
of N(t) approaches Π/µ gradually over time. Thus, all solutions in R4

+ are attracted to the area
Ω.

3 Stability Analysis of Model

3.1 Stability of disease-free equilibrium

The disease-free equilibrium (DFE) of Model (6) is determined by setting the rate of change
to zero. It is expressed as,

E0 = (S0, I0, A0, R0) =

(
Π

µ
, 0, 0, 0

)
.

In order to determine the stability of E0, the Jacobian matrix of the linearized model at E0 is com-
puted as follows,

J0 =


−µ −βI −βA 0
0 pβI − k1 pβA + σ 0
0 (1− p)βI (1− p)βA − k2 0
0 γI γA −µ

 ,

where k1 = µ+ α+ γI and k2 = µ+ σ + γA. Two eigenvalues of J0 are λ1, λ2 = −µ and roots of

λ2 + a1λ+ a2 = 0, (7)
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where

a1 = −(1− p)βA − pβI + k1 + k2,

= −(k1 + k2)(R0 − 1) +
(1− p)(βIσ + βAk1)

k2
+

pβIk2 + (1− p)βIσ

k1
,

a2 = −(1− p)βAk1 − pβIk2 − (1− p)βIσ + k1k
′
2,

= −k1k2(R0 − 1),

when

R0 =
pβIk2 + (1− p)(βIσ + βAk1)

k1k2
. (8)

Obviously that if R0 < 1, then a1, a2 > 0 and (7) have negative real roots. Moreover, (7) has real
roots which are positive in number when R0 > 1, and the subsequent lemma is demonstrated.

Lemma 3.1. The disease-free equilibrium E0 is locally asymptotically stable inΩwhenR0 < 1. Conversely,
it is unstable when R0 > 1.

R0 in (8) is called the basic reproduction number of infection. In the field of epidemiological
modeling, when R0 is less than 1, it indicates that the disease-free equilibrium is locally asymp-
totically stable. Specifically, if the initial sizes of the four state variables are sufficiently close to E0,
the disease will go extinct. If the equilibrium E0 is globally asymptotically stable, then the illness
will go extinct irrespective of the starting size of the four state variables. Thus, only the global
stability of E0 can guarantee elimination of the disease from any stages.

3.1.1 Global stability of E0

Following Theorem 3.1 of [16], we prove the global stability of E0.

Theorem 3.1. The disease-free equilibrium E0 is globally asymptotically stable in Ω if R0 ≤ 1, conversely,
if R0 > 1, then E0 is unstable, i.e., only solutions of (6) starting on the invariant S−axis approach E0.
Otherwise, solutions move away from E0.

Proof. The global stability of E0 is analyzed by considering the Lyapunov functionwhich is positive
definite function about E0,

V =
βI

k1
I +

(
βAk1 + βIσ

k1k2

)
A.

The derivative of V with respect to the solution of the system (6) can be expressed as,

V ′ =
βI

k1

(
p
βII + βAA

N
S + σA− k1I

)
+

(
βAk1 + βIσ

k1k2

)(
(1− p)

βII + βAA

N
S − k2A

)
≤ βI

k1
(p(βII + βAA) + σA− k1I) +

(
βAk1 + βIσ

k1k2

)
((1− p)(βII + βAA)− k2A)

= (βII + βAA)

(
p
βI

k1
+ (1− p)

βAk1 + βIσ

k1k2

)
+

βIσ

k1
A− βII −

(
βAk1 + βIσ

k1

)
A

= (βII + βAA)(R0 − 1).
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Consequently, if R0 ≤ 1, then V ′ is less than or equal to zero, and V ′ is equal to zero if and only if
both I and A are equal to zero. When substituting I = A = 0 into the first and fourth equations
in (6), we get S → Π/µ and R → 0 as t → ∞, respectively. Thus, the largest compact invariant set
in {(S, I, A,R) ∈ Ω : V ′ = 0} is the singleton {E0}. Therefore, by the Lasalle-Lyapunov theorem
([15], Chapter 2, Theorem 6.4), as t → ∞, any solution of (6) with initial sizes in Ω converges to
E0, which corresponds to E0 is globally asymptotically stable in Ω when R0 < 1.

Except in the case when I = A = 0, V ′ > 0 and S are sufficiently near to Π/µ if R0 > 1.
Solutions that begin sufficiently close to E0 exit from the neighborhood of E0, with the exception
of those on the invariant S−axis, which reduces to S′ = Π−µS, and consequently, S(t) → Π/µ as
t → ∞ (6). This concludes the proof.

3.2 Stability of endemic equilibrium

This section demonstrates the stability of the endemic equilibrium. The endemic equilibrium
of the model (6) expressed as E∗ = (S∗, I∗, A∗, R∗) is given by solving the model at steady-state,

S∗ =
Π

λ∗ + µ
, I∗ =

pλ∗S∗ + σA∗

k1
,

A∗ =
(1− p)λ∗S∗

k2
, R∗ =

γII
∗ + γAA

∗

µ
,

(9)

where

λ∗ =
βII

∗ + βAA
∗

S∗ + I∗ +A∗ +R∗ . (10)

For computational feasibility, A∗, I∗ and R∗ in (9) are rewritten in term of λ∗S∗ as follows:

A∗ =
(1− p)λ∗S∗

k2
, I∗ =

(pk2 + (1− p)σ)λ∗S∗

k1k2
,

R∗ =

(
(1− p)γAk1 + γI (pk2 + (1− p)σ)

)
λ∗S∗

µk1k2
.

(11)

Substituting (11) in (10) gives,

λ∗S∗

(
1 +

(pk2 + (1− p)σ)

k1k2
λ∗ +

(1− p)

k2
λ∗ ((1− p)γAk1 + γI (pk2 + (1− p)σ))

µk1k2
λ∗

− βI(pk2 + (1− p)σ)

k1k2
− βA(1− p)

k2

)
= 0.

(12)

Dividing (12) by λ∗S∗ ( λ∗S∗ = 0 corresponds to the disease-free equilibrium),

1 +
p(µ+ γI)k2 + (1− p)((µ+ γI)σ + (µ+ γA)k1)

µk1k2
λ∗ =

pβIk2 + (1− p)(βIσ + βAk1)

k1k2

= R0.

Therefore,

λ∗ =
µk1k2(R0 − 1)

p(µ+ γI)k2 + (1− p)((µ+ γI)σ + (µ+ γA)k1)
> 0, when R0 > 1.
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Substituting, λ∗ in (9) gives endemic equilibrium E∗:

S∗ =
Π

µ

(
pk2(µ+ γI) + (1− p)(k1k2 − σα)

k1k2(R0 − 1) + pk2(µ+ γI) + (1− p)(k1k2 − σα)

)
,

I∗ =
µ(pk2 + (1− p)σ)(R0 − 1)S∗

(µ+ γI)k2p+ (1− p)(k1k2 − σα)
,

A∗ =
µk1(1− p)(R0 − 1)S∗

(µ+ γI)k2p+ (1− p)(k1k2 − σα)
,

R∗ =
(γI(pk2 + (1− p)σ) + γAk1(1− p)) (R0 − 1)S∗

(µ+ γI)k2p+ (1− p)(k1k2 − σα)
.

The following lemma is demonstrated based on the above result.

Lemma 3.2. If R0 > 1, the Model (6) has a unique endemic equilibrium, denoted by E∗.

3.2.1 Local stability of E∗

Following the method in [4], the local stability of endemic equilibrium is analyzed.

Theorem 3.2. IfR0 > 1, then the endemic equilibrium E∗ of the Model (6) is locally asymptotically stable
(LAS).

Proof. The local stability of E∗ is analyzed by using center manifold theorem in [4]. For conve-
nience, we denote S = x1, I = x2, A = x3, R = x4 and N = x1 + x2 + x3 + x4. As a result, the
model (6) can be rewritten as,

dx1

dt
= Π− (βIx2 + βAx3)x1

x1 + x2 + x3 + x4
− µx1,

dx2

dt
=

p(βIx2 + βAx3)x1

x1 + x2 + x3 + x4
+ σx3 − k1x2,

dx3

dt
=

(1− p)(βIx2 + βAx3)x1

x1 + x2 + x3 + x4
− k2x3,

dx4

dt
= γIx2 + γAx3 − µx4,

(13)

when k1 = µ+ γI + α, k2 = µ+ γA + σ. Note that if R0 = 1 then, βI = β∗ =
k1(k2 − (1− p)βA)

pk2 + (1− p)σ
.

Jacobian of (13) at disease-free equilibrium point, (x∗
1, x

∗
2, x

∗
3, x

∗
4) = (Π/µ, 0, 0, 0) when βI = β∗ is

given by,

J(E0) =


−µ −β∗ −βA 0
0 pβ∗ − k1 pβA + σ 0
0 (1− p)β∗ (1− p)βA − k2 0
0 γI γA −µ

 .

Since J(E0) has a simple eigenvalue 0 and other eigenvalues have negative real parts, the system
(13) has a hyperbolic equilibrium point. The right eigenvector corresponding to the zero eigen-
value is expressed by w = [w1, w2, w3, w4]

T ,where,

w1 = −k1k2w4, w2 = µ(pk2 + (1− p)σ)w4, w3 = (1− p)µk1w4, w4 = w4 > 0.
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Further, the left eigenvector is denoted by v = [v1, v2, v3, v4], where,

v1 = 0, v2 = β∗v3, v3 = v3 > 0, v4 = 0.

Following, the expression of a and b in Theorem 4.1 [4], the associated non-zero partial derivatives
of the system (13) are denoted by,

∂2f2
∂x2

2

= −2pµβ∗

Π
,

∂2f2
∂x2∂x3

=
∂2f2

∂x3∂x2
= −pµ(β∗ + βA)

Π
,

∂2f2
∂x2∂x4

=
∂2f2

∂x4∂x2
= −pµβ∗

Π
,

∂2f2
∂x2

3

= −2pµβA

Π
,

∂2f2
∂x4∂x3

=
∂2f2

∂x3∂x4
= −pµβA

Π
,

∂2f3
∂x2

2

= −2(1− p)µβ∗

Π
,

∂2f3
∂x3∂x2

= − (1− p)µ(β∗ + βA)

Π
,

∂2f3
∂x4∂x2

=
∂2f3

∂x2∂x4
= − (1− p)µβ∗

Π
,

∂2f3
∂x2∂x3

= − (1− p)µ(β∗ + βA)

Π
,

∂2f3
∂x2

3

= −2(1− p)µβA

Π
,

∂2f3
∂x4∂x3

=
∂2f3

∂x3∂x4
= − (1− p)µβA

Π
,

∂2f2
∂x2∂β∗ = p,

∂2f3
∂x2∂β∗ = 1− p.

Therefore,

a =

4∑
i,j,k=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0)

=

4∑
i,j=1

v2wiwj
∂2f2

∂xi∂xj
(0, 0) +

4∑
i,j=1

v3wiwj
∂2f3

∂xi∂xj
(0, 0)

= −2v3w
2
4µ

2(1− p+ pβ∗)(µ(1− p)(k1 + σ) + 1 + pµk2)((1− p)(βAk1 + β∗σ) + pβ∗k2)

Π
< 0,

and

b =

4∑
k,i=1

vkwi
∂2fk

∂xi∂β∗ (0, 0)

=

4∑
i=1

v2wi
∂2f2

∂xi∂β∗ (0, 0) +

4∑
i=1

v3wi
∂2f3

∂xi∂β∗ (0, 0)

= µv3w4((1− p) + pβ∗)((1− p)σ + pk2) > 0.

Consequently, a < 0 and b > 0 which correspond to Theorem 4.1(iv) in [4]. The endemic equi-
librium E∗ of Model (6), which is unique and exists when R0 > 1, is locally asymptotically stable
(LAS) whenever R0 > 1 and βI > β∗, with βI being close to β∗.

3.2.2 Global stability of endemic equilibrium

The global stability of E∗ of the Model (6) for the case α = 0 is focused in this section. The
geometric approach for the global asymptotic stability of equilibria for nonlinear autonomous dif-
ferential equations proposed in [20] based on the geometric criterion developed by Li and Mul-
downey [17, 18] is used to analyze the global stability of E∗. Finally, the global stability of E∗ is
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demonstrated by using the following process in [28]. First, we show that system (6) is uniformly
persistence.

Definition 3.1. System (6) is said to be uniformly persistence if there exist a constant 0 < ε0 < Π/µ such
that any solution x(t) = (S(t), I(t), A(t), R(t)) with x(0) ∈ Ω̊ satisfies,

min
{
lim
t→∞

inf S(t), lim
t→∞

inf I(t), lim
t→∞

inf A(t), lim
t→∞

inf R(t)
}
≥ ε0. (14)

The uniformly persistence of the model (6) is shown by using Theorem 4.3 in [9]. In order to
satisfy the requirements of the theory, we chooseX = R

4,E = Ω andN is the largest invariant set
on the boundary ∂Ω which consist of a singleton E0 and is isolated. Combining with the Lemma
3.1, E0 is unstable when R0 > 1 and following theorem is established.

Theorem 3.3. System (6) is uniformly persistent in Ω̊ if and only if R0 > 1.

In order to provide global stability, it is essential that the system of equations fulfills all four
assumptions described in [20]. We start with the set of invariant manifolds in a system of au-
tonomous differential equations. Let f(x) be a continuous function that can find derivatives on
domain D and range of f(x) is the set of Rn. The system of autonomous differential equations is
written in the form:

x′ = f(x), x ∈ D ⊂ R
n, (15)

where x(t, x0) is the solution of the system (15) that satisfies the initial condition x(0, x0) = x0.

From Proposition 3.1 in [18], let g(x) be an Rm−valued function in Rn with dim

(
∂g

∂x

)
= m if

g(x) = 0. The set

Ω = {x ∈ R
n|g(x) = 0},

is an invariant manifold of the system (15) if and only if,

gf (x) =
∂g

∂x
· f(x) = N(x) · g(x),

where N(x) is a continuous matrix-valued function with size m × m. gf (x) is a matrix in which
each element is replacedwith a derivative with respect to f . Further, v(x) is a real-valued function
on Ω, where v(x) = tr(N(x)). The first three assumptions for proving global stability are:

(H1) Ω is simply connected.
(H2) There is a compact absorbing set K ⊂ D ⊂ Ω.
(H3) x∗ is the unique equilibrium of system (15) in D ⊂ Ω which satisfies f(x∗) = 0.

Next is the process for final assumptions, starting with considering the linear differential equation
that corresponds to (15), which is written in the form:

z′(t) =

[
PfP

−1 + P
∂f [m+2]

∂x
P−1 − v(x)I

]
z(t) =: B(x(t, x0))z(t), (16)

where P (x) is a C1 nonsingular
(

n
m+2

)
×
(

n
m+2

)
matrix-valued function in Ω in which ||P−1(x)||

is uniformly bounded for x ∈ K and Pf is a matrix in which each element is replaced with a
derivative with respect to f , and J [m+2] is the m + 2 additive compound matrix of the Jacobian
matrix of (15). The fourth assumption is derived from the matrix B(x(t, x0)) in (16) as expressed
in the following:
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(H4) Let bij(t) and cij(t) are each elements of matrix B(x(t, x0)) and C(t), respectively.

There exist number αi > 0, i = 1 . . . n such that for all t > T1 > 0 and all x0 ∈ K it holds,

bii(t) + Σi ̸=j
αj

αi
|bij(t)| ≤ cii(t) + Σi̸=j

αj

αi
|cij(t)|,

and

lim
t→∞

1

t

∫ t

0

cii(s) + Σi ̸=j
αj

αi
|cij(s)|ds = hi < 0.

From Theorem 13 in [28], if assumptions (H1)−(H4) are satisfied, the following lemma is estab-
lished.

Lemma 3.3. The unique endemic equilibrium x∗ of (15) is globally asymptotically stable in D ⊂ Ω.

The global stability of E∗ is proved by using Theorem 3.3 and Lemma 3.3 as shown in following:

Theorem 3.4. If α = 0, then endemic equilibrium E∗ of the system (6) is globally asymptotically stable
when R0 > 1 and conditions,

3(k1 + k2) > pβI + (1− p)βA,

(1− p)βA < k1,

pε(βA + βI) + k1 > 2pβI ,

k2 + ε(βA + βI) > pβI ,

k1 + k2 + ε(βA + βI) > pβI + (1− p)βA,

σ(1− p)k1
pk2

(
(1− p)k1γA

pk2γI
+ 1

)
< µ,

are satisfied.

Proof. First, we define g(X) = S + I + A + R − Π/µ where X = (S, I, A,R) ∈ R
4
+, the invariant

manifold of the system (6) is

Ω =
{
X ∈ R4

+|g(X) = 0
}
.

By Li andMuldowney in [18],N(x) = v(x) = −µ andm = dim
( ∂g

∂X

)
= 1. It is evident that (H1)

is true. Furthermore, for R0 > 1, (H2)-(H3) can be deduced from Theorem 3.3 and Lemma 3.2.

From (14), there exists T > 0 such that for t > T ,

ε0 < S(t), I(t), A(t), R(t) ≤ Π

µ
. (17)

For convenience, let S

N
= s, I

N
= i, A

N
= a and R

N
= r. Thus, (17) is rewritten as,

ε ≤ s, i, a, r ≤ 1, and s+ i+ a+ r = 1, (18)

when ε = ε0µ/Π. The Jacobian matrix of (6) may be expressed as,

J = −µI4×4 +Φ,
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where I4×4 is the 4× 4 identity matrix and

Φ =


−λ(1− s) (λ− βI)s (λ− βA)s λs

pλ(1− s) ps(βI − λ)− (γI + α) ps(βA − λ) + σ −pλs

(1− p)λ(1− s) (1− p)s(βI − λ) (1− p)s(βA − λ)− (γA + σ) −(1− p)λs

0 γI γA 0

 ,

where λ = βI i+ βAa. According to the definition of the third additive compound matrix in [18],
we get

J [3] = Φ[3] − 3µI4×4,

with

Φ[3] =
(
ϕ
[3]
1 , ϕ

[3]
2 , ϕ

[3]
3 , ϕ

[4]
4

)T
,

where

ϕ
[3]
1 =


−λ(1− s) + (pβI + (1− p)βA − λ)s− (γA + γI + σ + α)

−(1− p)λs

pλs

λs

 ,

ϕ
[3]
2 =


γA

−λ(1− s) + pβIs(1− i)− pβAsa− (γI + α)

pβAs− pλs+ σ

βAs− λs

 ,

ϕ
[3]
3 =


−γI

(1− p)βIs− (1− p)λs

−λ(1− s) + (1− p)βAs− (1− p)λs− (γA + σ)

λs− βIs

 ,

ϕ
[3]
4 =


0

−(1− p)λ(1− s)

pλ(1− s)

(pβI + (1− p)βA)s− (γA + γI + σ + α)

 .

Let P (x) be a diagonal matrix such that,

P (x) = diag {r, a, i, s} ,

follows direct computational from (16), this yield,

B(t) = PfP
−1 + PJ [3]P−1 + µI4×4 = diag

{
r′

r
,
a′

a
,
i′

i
,
s′

s

}
+ PΦ[3]P−1 − 2µI4×4,

where

PΦ[3]P−1 =
(
ζ
[3]
1 , ζ

[3]
2 , ζ

[3]
3 , ζ

[3]
4

)T
,
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ζ
[3]
1 =


−λ(1− s) + (pβI + (1− p)βA − λ)s− (γI + γA + σ + α)

−(1− p)λ sr
a

pλ sr
i

λr

 ,

ζ
[3]
2 =


γA

a
r

−λ(1− s) + pβIs(1− i)− pβAsa− (γI + α)

pβA
sa
i − pλ sa

i + σ a
i

βAa− λa

 ,

ζ
[3]
3 =


−γI

i
r

(1− p)βI
si
a − (1− p)λ si

a

−λ(1− s) + (1− p)βAs− (1− p)λs− (γA + σ)

λi− βI i

 ,

ζ
[3]
4 =


0

−(1− p)λ(1− s) sa
pλ(1− s) si

(pβI + (1− p)βA − λ)s− (γA + γI + σ + α)

 .

Observe that (6) can be rewritten as,

S′

S
=

Π

µ
− βI i− βAa− µ, (19)

pβA
sa

i
=

I ′

I
− pβIs+ k1, (20)

(1− p)βI
si

a
=

A′

A
− (1− p)βAs+ k2, (21)

R′

R
= γI

i

r
+ γA

a

r
− µ, (22)

a

i
=

(1− p)k1
pk2

+
(1− p)

pk2

I ′

I
− 1

k2

A′

I
. (23)

For convenience in proof, the next process is considered by separating in two cases.

Case I: In the case βA − λ > 0. By (18) and (19)−(23), it can be reveal that,

h1(t) = b11(t) + Σ4
j=2|b1j(t)|

= −λ(1− s) + (pβI + (1− p)βA − λ)s− (k1 + k2) + (1− p)λ
sr

a
+ pλ

sr

i
+ λr +

r′

r
= −λ(1− s) + (pβI + (1− p)βA − λ)s− (k1 + k2)

+

(
(1− p)βAs+ pβIs+ (1− p)βI

si

a
+ pβA

sa

i

)
r + λr +

r′

r

= −λ(1− s) + (pβI + (1− p)βA − λ)s− (k1 + k2) +

(
(1− p)βAs+ pβIs

+
(A′

A
− (1− p)βAs+ k2

)
+
(I ′
I

− pβIs+ k1

))
r + λr +

r′

r

423



A. Sirijampa et al. Malaysian J. Math. Sci. 19(2): 411–441(2025) 411 - 441

= −λ(1− r) + (pβI + (1− p)βA)s− (k1 + k2)(1− r) +
r′

r
+

A′

A
r +

I ′

I
r

= −λ(1− r)−
(
k1 + k2 − (pβI + (1− p)βA)

)
s− (k1 + k2)(i+ a) +

r′

r

+
A′

A
r +

I ′

I
r

≤ −3ε2(βI + βA)− ε
(
k1 + k2 − (pβI + (1− p)βA)

)
− 2ε(k1 + k2) +

r′

r

+
A′

A
r +

I ′

I
r

≤ −ε
(
3(k1 + k2)− (pβI + (1− p)βA)

)
+

r′

r
+

A′

A
+

I ′

I
∼= ĥ1(t).

h2(t) = b22(t) + Σj ̸=2|b2j(t)|

= −λ(1− s) + pβIs(1− i)− pβAsa− (k1 + µ) + γA
a

r

+ (βA − λ)p
sa

i
+ σ

a

i
+ (βA − λ)a+

a′

a

= −(βI i+ βAa)(1− s) + pβIs(1− i)− pβAsa− (k1 + µ) +
(
µ− γI

i

r
+

R′

R

)
+

(
pβA

(1− a)sa

i
− pβIsa

)
+ σ

(
(1− p)k1

pk2
+

(1− p)

pk2

I ′

I
− A′

k2I

)

+

(
aβA(1− a)− βIai

)
+

a′

a

= −βAa− βI i(1− s) + pβIs(1− i) + (1− p)βAsa− k1 − γI
i

r

+ (1− a)

(
I ′

I
− pβIs+ k1

)
− pβIsa+

σ(1− p)k1
pk2

+

(
βA(1− a)a− βIai

)
+

a′

a
+

R′

R
+

σ(1− p)

pk2

I ′

I
− σ

A′

k2I

= −βI i(1− s)− pβIsi+ (1− p)βAsa− γI
i

r
− k1a+

σ(1− p)k1
pk2

− βAa
2 − βIai+

a′

a
+

R′

R
+

σ(1− p)

pk2

I ′

I
− σ

A′

k2I
+ (1− a)

I ′

I

=

(
σ(1− p)k1

pk2
− βI i(1− s)− pβIsi− γI

i

r

)
+ a
(
(1− p)βAs− k1 − βAa− βI i

)
+

a′

a
+

R′

R
+

σ(1− p)

pk2

I ′

I
− σ

A′

k2I
+ (1− a)

I ′

I

≤

(
σ(1− p)k1

pk2
− γI

i

r

)
− a
(
k1 − (1− p)βA

)
+

a′

a
+

R′

R
+

σ(1− p)

pk2

I ′

I
− σ

A′

I

+ (1− a)
I ′

I
.
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The conditions of h2(t) are separate in two cases:

Case I.I) By assumption γI
i

r
>

σ(1− p)k1
pk2

, then,

h2(t) ≤

(
σ(1− p)k1

pk2
− γI

i

r

)
− a
(
k1 − (1− p)βA

)
+

a′

a
+

R′

R
+

σ(1− p)

pk2

I ′

I

− σ
A′

k2I
+ (1− a)

I ′

I

≤ −a
(
k1 − (1− p)βA

)
+

a′

a
+

R′

R
+

σ(1− p)

pk2

I ′

I
+ (1− a)

I ′

I

≤ −ε
(
k1 − (1− p)βA

)
+

a′

a
+

R′

R
+

σ(1− p)

pk2

I ′

I
+ (1− a)

I ′

I
∼= ĥ2a(t).

Case I.II) By assumption γI
i

r
<

σ(1− p)k1
pk2

.

For this case,

γA
a

r
< γA

σ(1− p)k1
pk2γI

a

i

=
γAσ(1− p)k1

pk2γI

(
(1− p)k1

pk2
+

(1− p)

pk2

I ′

I
− 1

k2

A′

I

)
.

Thus,

h2(t) = −λ(1− s) + pβIs(1− i)− pβAsa− (k1 + µ) + γA
a

r

+ (βA − λ)p
sa

i
+ σ

a

i
+ (βA − λ)a+

a′

a
≤ −(βI i+ βAa)(1− s) + pβIs(1− i)− pβAsa− (k1 + µ)

+
γAσ(1− p)k1

pk2γI

(
(1− p)k1

pk2
+

(1− p)

pk2

I ′

I
− 1

k2

A′

I

)
+

(
pβA

(1− a)sa

i
− pβIsa

)
+ σ

(
(1− p)k1

pk2
+

(1− p)

pk2

I ′

I
− A′

k2I

)

+

(
aβA(1− a)− βIai

)
+

a′

a

= −βI i(1− s) + pβIs(1− i) + (1− p)βAsa− (k1 + µ)

+
γAσ(1− p)k1

pk2γI

(
(1− p)k1

pk2
+

(1− p)

pk2

I ′

I
− 1

k2

A′

I

)
+ (1− a)

(
I ′

I
− pβIs+ k1

)
+ σ

(
(1− p)k1

pk2
+

(1− p)

pk2

I ′

I
− A′

k2I

)

− pβIsa− βAa
2 − βIai+

a′

a
,

≤ −βI i(1− s)− pβIsi+ a ((1− p)βAs− k1)− µ

+
σ(1− p)k1

pk2

(
(1− p)k1γA

pk2γI
+ 1

)
+

a′

a
+ (1− a)

I ′

I

+
σ(1− p)

pk2

I ′

I
+

γAσ(1− p)k1
pk2γI

(
(1− p)

pk2

)
I ′

I
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≤ −ε
(
k1 − (1− p)βAs

)
−

(
µ− σ(1− p)k1

pk2

(
(1− p)k1γA

pk2γI
+ 1

))

+
a′

a
+ (1− a)

I ′

I
+

σ(1− p)

pk2

I ′

I
+

γAσ(1− p)k1
pk2γI

(
(1− p)

pk2

)
I ′

I
∼= ĥ2b(t).

h3(t) = b33(t) + Σj ̸=3|b3j(t)|

= −λ(1− s) + (1− p)βAs− (1− p)λs− γA − σ − 2µ+ γI
i

r

+ (1− p)(βI − λ)
si

a
+ (βI − λ)i+

i′

i
= −λ(1− s) + (1− p)(1− a)βAs− (1− p)βIsi− γA − σ − 2µ

+

(
R′

R
− γA

a

r
+ µ

)
+ (1− p)βI

si

a
(1− i)− (1− p)βAsi+ βI(1− i)i

− βAai+
i′

i

= −βI i(1− s)− βAa(1− s) + (1− p)(1− a)βAs− (1− p)βIsi− k2 − γA
a

r

+

(
A′

A
− (1− p)βAs+ k2

)
(1− i)− (1− p)βAsi+ βI(1− i)i− βAai

+
i′

i
+

R′

R

= i
(
βI(1− i)− βI(1− s)− (1− p)βIs− k2 − βAa

)
− βAa(1− s)

− (1− p)βAsa− γA
a

r
+

i′

i
+

R′

R
+ (1− i)

A′

A

= i
(
βI(1− i)− βI(1− s)− (1− p)βIs− k2 − βAa

)
− βAa(1− s)

− (1− p)βAsa− γA
a

r
+

i′

i
+

R′

R
+ (1− i)

A′

A

= −i
(
k2 + βAa+ βI i− pβIs

)
− βAa(1− s)− (1− p)βAsa− γA

a

r
+

i′

i

+
R′

R
+ (1− i)

A′

A

≤ −ε
(
k2 + ε(βA + βI)− pβI

)
+

i′

i
+

R′

R
+ (1− i)

A′

A
∼= ĥ3(t).

h4(t) = b44(t) + Σ3
j=1|b4j(t)|

=
(
pβI + (1− p)βA − λ

)
s− (γA + γI + σ + α) + (1− p)λ(1− s)

s

a

+ pλ(1− s)
s

i
− 2µ+

s′

s

=
(
pβI + (1− p)βA − λ

)
s− k1 − k2 + (1− p)βI

si

a
(1− s) + (1− p)βAs(1− s)

+ pβIs(1− s) + pβA
sa

i
(1− s) +

s′

s

=
(
pβI + (1− p)βA − λ

)
s− k1 − k2 +

(
A′

A
− (1− p)βAs+ k2

)
(1− s)

+ (1− p)βAs(1− s) + pβIs(1− s) +

(
I ′

I
− pβIs+ k1

)
(1− s) +

s′

s
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= −s
(
k1 + k2 + βI i+ βAa− pβI − (1− p)βA

)
+

s′

s
+ (1− s)

A′

A
+ (1− s)

I ′

I

≤ −ε
(
k1 + k2 + ε(βI + βA)− pβI − (1− p)βA

)
+

s′

s
+ (1− ε)

A′

A
+ (1− ε)

I ′

I
∼= ĥ4(t).

By the conditions,

3(k1 + k2) > pβI + (1− p)βA,

k1 > (1− p)βA,

k2 + ε(βA + βI) > pβI ,

k1 + k2 + ε(βA + βI) > pβI + (1− p)βA,

µ >
σ(1− p)k1

pk2

(
(1− p)k1γA

pk2γI
+ 1

)
,

and based on (18). Taking the matrix C1(t) = diag
{
ĥ1(t), ĥ2a(t), ĥ3(t), ĥ4(t)

}
and

C2(t) = diag
{
ĥ1(t), ĥ2b(t), ĥ3(t), ĥ4(t)

}
in (H4) results in,

lim
t→∞

1

t

∫ t

0

ĥi(s)ds = Ĥi < 0, i = 1, 2a, 2b, 3, 4,

where

Ĥ1 = −ε
(
3(k1 + k2)− (pβI + (1− p)βA)

)
,

Ĥ2a = −ε
(
k1 − (1− p)βA

)
,

Ĥ2b = −ε
(
k1 − (1− p)βAs

)
−

(
µ− σ(1− p)k1

pk2

(
(1− p)k1γA

pk2γI
+ 1

))
,

Ĥ3 = −ε
(
k2 + ε(βA + βI)− pβI

)
,

and

Ĥ4 = −ε
(
k1 + k2 + ε(βA + βI)− pβI − (1− p)βA

)
.

Case II: In the case βA − λ < 0. Using similar arguments in Case I yields,

h1(t) = −λ(1− s) + (pβI + (1− p)βA − λ)s− (k1 + k2) + (1− p)λ
sr

a
+ pλ

sr

i
+ λr +

r′

r

= −λ(1− r)−
(
k1 + k2 − (pβI + (1− p)βA)

)
s− (k1 + k2)(i+ a) +

r′

r
+

A′

A
r +

I ′

I
r

≤ −3ε2(βI + βA)− ε
(
k1 + k2 − (pβI + (1− p)βA)

)
− 2ε(k1 + k2) +

r′

r
+

A′

A
r +

I ′

I
r

≤ −ε
(
3(k1 + k2)− (pβI + (1− p)βA)

)
+

r′

r
+

A′

A
+

I ′

I
∼= h̄1(t).
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h2(t) = −λ(1− s) + pβIs(1− i)− pβAsa− (k1 + µ) + γA
a

r

+ (λ− βA)p
sa

i
+ σ

a

i
+ (λ− βA)a+

a′

a
= −λ(i+ a+ r) + pβIs(1− i)− pβAsa− (k1 + µ)

+

(
R′

R
+ µ− γI

i

r

)
+ pβIsa− pβA

sa

i
(1− a) +

σ(1− p)k1
pk2

+
σ(1− p)

pk2

I ′

I
− σ

A′

k2I
+ λa− βAa+

a′

a

= −λ(i+ r) + pβIs(1− i)− pβAsa− k1 +
R′

R
− γI

i

r

+ pβIsa−

(
I ′

I
− pβIs+ k1

)
(1− a) +

σ(1− p)k1
pk2

+
σ(1− p)

pk2

I ′

I

− σ
A′

k2I
− βAa+

a′

a

= −λ(i+ r) + 2pβIs− pβIsi− pβAsa− k1 − k1(s+ i+ r) +
R′

R
− γI

i

r

− I ′

I
(1− a) +

σ(1− p)k1
pk2

+
σ(1− p)

pk2

I ′

I
− σ

A′

I
− βAa+

a′

a

≤ −s(pβI i+ pβAa+ k1 − 2pβI) +
R′

R
+

σ(1− p)k1
pk2

+
σ(1− p)

pk2

I ′

I
+

a′

a

≤ −ε(pε(βI + βA) + k1 − 2pβI) +
R′

R
+

σ(1− p)k1
pk2

+
σ(1− p)

pk2

I ′

I
+

a′

a
∼= h̄2(t).

h3(t) = b33(t) + Σj ̸=3|b3j(t)|

= −λ(1− s) + (1− p)βAs− (1− p)λs− γA − σ − 2µ+ γI
i

r

+ (1− p)(βI − λ)
si

a
+ (βI − λ)i+

i′

i
= −λ(1− s) + (1− p)(1− a)βAs− (1− p)βIsi− γA − σ − 2µ

+

(
R′

R
− γA

a

r
+ µ

)
+ (1− p)βI

si

a
(1− i)− (1− p)βAsi+ βI(1− i)i− βAai+

i′

i

= −βI i(1− s)− βAa(1− s) + (1− p)(1− a)βAs− (1− p)βIsi− k2 − γA
a

r

+

(
A′

A
− (1− p)βAs+ k2

)
(1− i)− (1− p)βAsi+ βI(1− i)i− βAai+

i′

i
+

R′

R

= −i
(
k2 + βAa+ βI i− pβIs

)
− βAa(1− s)− (1− p)βAsa− γA

a

r
+

i′

i
+

R′

R

+ (1− i)
A′

A

≤ −ε
(
k2 + ε(βA + βI)− pβI

)
+

i′

i
+

R′

R
+ (1− i)

A′

A
∼= h̄3(t).
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h4(t) = b44(t) + Σ3
j=1|b4j(t)|

=
(
pβI + (1− p)βA − λ

)
s− (γA + γI + σ + α) + (1− p)λ(1− s)

s

a

+ pλ(1− s)
s

i
− 2µ+

s′

s

=
(
pβI + (1− p)βA − λ

)
s− k1 − k2 +

(
A′

A
− (1− p)βAs+ k2

)
(1− s)

+ (1− p)βAs(1− s) + pβIs(1− s) +

(
I ′

I
− pβIs+ k1

)
(1− s) +

s′

s

= −s
(
k1 + k2 + βI i+ βAa− pβI − (1− p)βA

)
+

s′

s
+ (1− s)

A′

A
+ (1− s)

I ′

I

≤ −ε
(
k1 + k2 + ε(βI + βA)− pβI − (1− p)βA

)
+

s′

s
+ (1− ε)

A′

A
+ (1− ε)

I ′

I
∼= h̄4(t).

Then, the matrix C(t) in condition (H4) as,

C(t) = diag
(
h̄1(t), h̄2(t), h̄3(t), h̄4(t)

)
,

based on (18) and conditions,

3(k1 + k2) > pβI + (1− p)βA,

pε(βA + βI) + k1 > 2pβI ,

k2 + ε(βA + βI) > pβI ,

k1 + k2 + ε(βA + βI) > pβI + (1− p)βA,

it shown that,

lim
t→+∞

1

t

∫ t

0

h̄i(s)ds = H̄i < 0, i = 1, . . . , 4,

where

H̄1 = −ε
(
3(k1 + k2)− (pβI + (1− p)βA)

)
,

H̄2 = −ε
(
pε(βA + βI) + k1 − 2pβI

)
,

H̄3 = −ε
(
k2 + ε(βA + βI)− pβI

)
,

H̄4 = −ε
(
k1 + k2 + ε(βA + βI)− pβI − (1− p)βA

)
.

Accordingly, summing Cases I and II together and employing Lemma 3.3 can lead to globally
asymptotically stable of E∗ in Ω̊.

4 Numerical Results

In this section, the numerical solutions are simulated using Matlab with Runge-Kutta order 4
method.
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4.1 Stability of equilibrium points

The stability of the model is studied by observing the solution’s behaviors in Model (6). The
numerical solutions are simulated by the following parameters from Table 1. We modify only βI

to 0.12 and βA to 0.15 so that the value of R0 = 0.8238 which less than one. In the biological
meaning of R0 < 1, the contact rate of each infected individual to other persons is less than one.
Thus, the disease disappears from the area when time increases. The numerical solutions are de-
picted in Figure 2. It can be observed that the number of symptomatic and asymptomatic infected
individuals decreases to zero. The number of recovered individuals initially increases and then
decreases to zero. Susceptible individuals have been decrease to a constant value greater than
zero. The simulation is consistent with Theorem 3.1.

Table 1: The description and values of parameters of the SIAR model (6).

Parameter Value Unit References
Π 2500 Days−1 Assumed
βI 0.4 - [33]
βA 0.4 - [33]
p 0.602 - [33]
µ 1/(77× 365) Days−1 [21, 34]
γI 1/7 Days−1 [24]
γA 1/5 Days−1 [24]
σ 0.25 Days−1 Assumed
α 0.000015 Days−1 Assumed

0 0.5 1 1.5 2 2.5

Time 10
5

0

2

4

6

8

S
u

s
c

e
p

ti
b

le
 I

n
d

iv
id

u
a

ls

10
7

0 20 40 60 80 100

Time

0

1000

2000

3000

4000

5000

6000

S
y

m
p

to
m

a
ti

c
 I

n
fe

c
te

d
 I

n
d

iv
id

u
a

ls

0 20 40 60 80 100

Time

0

500

1000

1500

2000

2500

3000

A
s

y
m

p
to

m
a

ti
c

 I
n

fe
c

te
d

 I
n

d
iv

id
u

a
ls

0 0.5 1 1.5 2 2.5

Time 10
5

0

0.5

1

1.5

2

2.5

3

R
e

c
o

v
e

r
e

d
 I

n
d

iv
id

u
a

ls

10
5

Figure 2: The simulations of the Model (6) for the case R0 = 0.8236.
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Regarding the stability of the endemic equilibrium, the numerical solutions are simulated us-
ing parameters exactly as shown in Table 1, resulting in R0 = 2.6576. This means each infected
individual can spread disease to more than one individual, indicating that the disease remains in
the area. Numerical solutions are shown in Figure 3. It can be observed that the number of symp-
tomatic infected and asymptomatic infected individuals reaches a maximum at the first peak and
decrease to equilibrium points. Further, the number of susceptible and recovered individuals in-
crease to the equilibrium point. This simulation is consistent with Theorem 3.2.

0 0.5 1 1.5 2 2.5

Time 10
5

0

1

2

3

S
u

s
c
e
p

ti
b

le
 I
n

d
iv

id
u

a
ls

10
7

0 5000 10000 15000

Time

0

0.5

1

1.5

2

2.5

3

S
y

m
p

to
m

a
ti

c
 I

n
fe

c
te

d
 I

n
d

iv
id

u
a

ls 10
4

0 5000 10000 15000

Time

0

1000

2000

3000

4000

5000

A
s
y
m

p
to

m
a
ti

c
 I
n

fe
c
te

d
 I
n

d
iv

id
u

a
ls

0 0.5 1 1.5 2 2.5

Time 10
5

0

1

2

3

4

5

R
e
c
o

v
e
r
e
d

 I
n

d
iv

id
u

a
ls

10
7

Figure 3: The simulations of the Model (6) for the case R0 = 2.6576.

4.2 Numerical simulations for comparison SIAR model and infected cases of influenza A
(H1N1) 2022 in Thailand

The Department of Disease Control started monitoring a new strain of influenza A (H1N1)
on May 1, 2009, and found the first patient in Thailand toward the end of May. Subsequently, the
number of patients increased, and the disease began to spread widely by June. The surveillance
and monitoring program has concluded that in 2009 there were a total of 30, 956 patients with
an infection rate of 48.78 per 100, 000 residents. Males are infected more than females at a ratio
of 1.03 : 1. There were 157 deaths, resulting in a death rate of 0.31 per 100, 000 residents, and a
death-to-case ratio of 0.64. A significant number of patients were infected during the rainy season
from June to September, reflecting the same trend as seasonal influenza. The central region has the
highest infection among all regions of Thailand. Among occupations, students have the highest
infection rate [29].
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Figure 4: Number of monthly influenza A (H1N1) patients between 2009 − 2022.

Department of Disease Control, Ministry of Public Health have monitored monthly cases on
the new influenza A (H1N1) strain from 2009−2022 [23] as shown Figure 4. In 2020, the reported
cases irregularly decreased due to the COVID-19 epidemic in Thailand. Prevention guidelines
and measures relevant to COVID-19 including social distancing, work from home policies, wear-
ing masks and hand washing also helped prevent influenza infection due to similar transmission
mechanisms. In 2022, the number of cases for the new strain influenza started to rise to previous
levels as COVID-19 cases decreased due to mass vaccination in the country.
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Figure 5: Comparison of the SIAR model and actual data of number of influenza A (H1N1) cases in 2022.

To validate our model, we run a simulation with the parameters shown in Table 1 for the year
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2022 and compareed the results with real data. The reproduction number is 2.6576 (R0 > 1).
As shown in Figure 5, our SIAR model successfully predicts the increasing trend in cases during
the rainy season observed from June to September. It is noteworthy that this trend aligned with
monthly average numbers of cases from 2016− 2022.

5 Sensitivity Analysis

This section investigates the impact of parameters on the dynamics of the Model (6). Sen-
sitivity analysis is used to analyze these effects. We analyze sensitivity by using the values of
parameters listed in Table 1 which are parameters utilized by Thai Department of Disease Control
to predict the number of infected population from influenza A (H1N1) in Thailand.

5.1 Sensitivity analysis of R0

In an epidemic model, disease outbreaks will increase or decrease depending on the value of
basic reproduction number (R0). If R0 > 1, the outbreak continues to spread, while if R0 < 1,
the outbreak gradually decreased. Thus, it is crucial to identify the parameter which can reduce
the value of R0. This helps to design strategies to control disease outbreaks effectively. Sensitiv-
ity analysis of the basic reproduction number uses the normalized forward sensitivity index of a
variable proposed in Nakul et al. [7, 32] by following the definition.

Definition 5.1. The normalized forward sensitivity index of variable u that is differentiable with respect to
parameter p is defined as:

Γu
p :=

∂u

∂p
× p

u
. (24)

The sensitivity indices of R0 is shown in Appendix A.

The sensitivity analysis ofR0 is analyzed by using parameter values in Table 1. The sensitivity
indices of each parameter are calculated by the formula (24) and the results are shown in Table
2. From ΓR0

βI
= +0.867, it can be inferred that R0 increases by 8.67% when βI increases by 10%.

Likewise, increasing parameters βA, p and σ by 10%, results in the basic reproduction number R0

increasing by 1.33%, 0.80% and 0.30%, respectively. Conversely, from ΓR0
γI

= −0.867, in can be
inferred that R0 decreases by 8.67%when γI increases by 10%. Likewise, increasing γI , γA, µ and
α by 10%, results in R0 decreasing by 8.67%, 1.63%, 0.002% and 0.0009%, respectively.

Following the method outlined in [32], the relationship of parameters to the decrease of R0 is
summarized in Table 2. To reduce R0 by 1%, it is necessary to increase parameters γI , γA, µ, and
α individually by 1.14%, 5.99%, 4044.53%, and 10864.72%, respectively. Alternatively, decreasing
parameters βI , βA, p, and σ by 1.15%, 7.51%, 12.42%, and 41.66%, respectively, would lead to the
same reduction in R0.
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Table 2: Sensitivity indices of R0 to parameters in model (6), evaluated at baseline parameter values in Table 1.

Parameters Sensitivity index Corresponding % change
βI ΓR0

βI
= +0.86689 −1.15355

βA ΓR0

βA
= +0.13311 −7.51264

p ΓR0
p = +0.08048 −12.42474

σ ΓR0
σ = +0.02956 −41.65959

γI ΓR0
γI

= −0.86658 +1.14080

γA ΓR0
γA

= −0.16264 +5.98504

µ ΓR0
µ = −0.00024 +4044.53576

α ΓR0
α = −0.00009 +10864.72649

Figure 6 shows the sensitivity indices of each parameter. It is evident that the most impactful
parameters are βI and γI followed by γA, βA, p, σ, µ and α. This implies that the most efficient
strategy for preventing the outbreak of influenza A (H1N1) is to either reduce the transmission
rate from infected individuals or increase the recovery rate of infected individuals. Thesemeasures
are the most efficient ways to mitigate the outbreak of H1N1 when the disease occurs.
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0.5

1

I

AI

A

p

Figure 6: The sensitivity indices of R0.

5.2 Sensitivity analysis of E∗

In the epidemic model, endemic equilibrium (E∗) represents the stable number of each sub-
group of all individuals after the outbreak. An increase in outbreaks can be prevented if the num-
ber of infected individuals is reduced. Thus, it is important to identify parameters that help reduce
the number of infected individuals. Sensitivity indices of E∗ numerically calculated by themethod
in [7, 32] as shown in Appendix B.

The sensitivity indices of E∗ are shown in Table 3. It can be observed that increasing Π has
results in increasing the number of all individuals at the equilibrium because this parameter cor-
responds to the growth of the entire population. On the contrary, the number of all individuals
decrease when µ increases because all individuals have a natural death rate of µ.
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Table 3: Sensitivity indices of E∗.

Parameters Endemic equilibrium
S∗ I∗ A∗ R∗

Π 1.00000 1.00000 1.00000 1.00000

βI −0.86692 0.52295 0.52295 0.52295

βA −0.13311 0.08030 0.08030 0.08030

µ −0.99976 −0.00042 −0.00023 −1.00038

σ −0.02957 0.13723 −0.53768 0.01782

α 0.00004 −0.00013 −0.00002 −0.00011

γI 0.86667 −1.52245 −0.52280 −0.52251

γA 0.16265 −0.21749 −0.54253 −0.09807

p −0.08050 0.37366 −1.46400 0.04852

The equilibrium of individuals I∗, A∗ and R∗ increases by increasing the parameters βI and
βA while S∗ decreases. On the contrary, the equilibrium of individuals I∗, A∗ and R∗ decreases
by increasing parameters γI and γA while S∗ increases.

This implies that following outbreaks of influenza A (H1N1), decreasing the transmission rate
from symptomatic and asymptomatic infected individuals is the best measure to reduce the num-
ber of infected individuals at equilibrium. However, increasing the recovery rate in symptomatic
and asymptomatic infected individuals appears to be the best measure to increase the susceptible
individuals at equilibrium point.

Figure 7 shows a graph of the sensitivity indices of each parameter (except Π) of all subgroup
individuals. The most sensitive parameter for S∗ is µ followed by βI , γI , γA, βA, p, σ and α, re-
spectively. The most sensitive parameter for I∗ is γI followed by βI , p, γA, σ, µ and α. The most
sensitive parameter forA∗ is p followed by γA, βI , σ, γI , βA, µ and α. The most sensitive parameter
for R∗ is µ followed in order by βI , γI , γA, βA, p, σ and α.

According to the results in Table 3 and Figure 7, the number of infected individuals decreases
as the infected individual’s recovered rate (γI) increases. This implies that early treatment will
greatly reduce the number of infected individuals. Similarly, as the recovery rate of asymptomatic
infected individuals (γA) increases, the number of asymptotic infected individuals decreases. Fur-
thermore, decreasing the proportion of susceptible individuals who progress to symptomatic in-
fected individuals (p) would result in better outbreak control for the number of asymptomatic
infected individuals. Therefore, the key factors in controlling influenza H1N1 are not only con-
trolling the spread of the disease (βI and βA), but also reducing the treatment time for patients
in both individuals (γI and γA). However, during the H1N1 outbreak, wearing masks is the best
way to protect ourselves, as is frequently checking our hands with alcohol gel, which will help
reduce the risk of getting sick.

6 Conclusion

This research presented a SIAR model with constant immigration. The model has two equi-
librium points: disease-free equilibrium (E0) and endemic equilibrium (E∗). The global stability
of E0 is analyzed by using the Lyapunov theorem, and E0 is globally asymptotically stable when
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Figure 7: The sensitivity indices of endemic equilibrium (E∗) in each individual.

R0 < 1. By using the center manifold theorem, we shows that E∗ is locally asymptotically stable
when R0 > 1. A geometric approach to global stability is applied to analyze the global stabil-
ity of E∗. For the case α = 0 and under the conditions specified in Theorem 3.4, E∗ is globally
asymptotically stable when R0 > 1.

The simulations of the Model (6) demonstrate that when R0 < 1, the numerical solutions of
the model approach to E0 as time increase. WhenR0 > 1 solutions converge to E∗, supporting the
local stability theorem of equilibrium points. Furthermore, Model (6) is used to predict the trend
of infected cases from influenza A (H1N1), as shown in Figure 5.

The sensitivity analysis of the basic reproduction number and the endemic equilibrium of the
model are presented. The most sensitive parameters affecting the basic reproduction number are
the transmission rate of symptomatic infected βI and the recovery rate of symptomatic infected
γI . The endemic equilibrium S∗, I∗, A∗, R∗ are most sensitive to parameters Π ,γI , p and µ, re-
spectively. Further, βI and γI are the most effective parameters to reduce the number of infected
individuals at the endemic equilibrium point. In conclusion, to prevent the disease, it is important
to reduce the value of R0. Thus, decreasing the transmission rate and increasing the recovery rate
of the symptomatic infected individuals are the best strategies to prevent the disease. Further-
more, a decreasing transmission rate from infected βI , and an increasing recovery rate in infected
individuals γI are the best measures during a large outbreak.

Acknowledgement The author is very grateful to many people who read the manuscript and
shared their valuable comments and suggestions, which helped improve the paper in the future.
This researchwas funded byCollege of Industrial Technology, KingMongkut’s University of Tech-

436



A. Sirijampa et al. Malaysian J. Math. Sci. 19(2): 411–441(2025) 411 - 441

nology North Bangkok (Grant No. Res CIT0324/2018).

Conflicts of Interest The authors declare no conflict of interest.

References

[1] M. A. Abdoon, R. Saadeh, M. Berir, F. E. Guma & M. Ali (2023). Analysis, modeling and
simulation of a fractional-order influenza model. Alexandria Engineering Journal, 74, 231–240.
https://doi.org/10.1016/j.aej.2023.05.011.

[2] S. M. Al-Zahrani, F. E. I. Elsmih, K. S. Al-Zahrani & S. Saber (2022). A fractional order SITR
model for forecasting of transmission of COVID-19: sensitivity statistical analysis. Malaysian
Journal of Mathematical Sciences, 16(3), 517–536. https://doi.org/10.47836/mjms.16.3.08.

[3] S. Annas, M. I. Pratama,M. Rifandi, W. Sanusi & S. Side (2020). Stability analysis and numer-
ical simulation of SEIR model for pandemic COVID-19 spread in indonesia. Chaos, Solitons
& Fractals, 139, Article ID: 110072. https://doi.org/10.1016/j.chaos.2020.110072.

[4] C. Castillo-Chavez & B. Song (2004). Dynamical models of tuberculosis and their applica-
tions. Mathematical Biosciences & Engineering, 1(2), 361–404. https://doi.org/10.3934/mbe.
2004.1.361.

[5] Centers for Disease Control and Prevention. Types of influenza viruses. https://www.cdc.
gov/flu/about/viruses/types.htm 2023. Accessed: 2024-05-12.

[6] Centers for Disease Control and Prevention. Influenza. https://www.cdc.gov/flu/about/
?CDC_AAref_Val=https://www.cdc.gov/flu/about/keyfacts.htm 2024. Accessed: 2024-05-
13.

[7] N. Chitnis, J. M. Hyman & J. M. Cushing (2008). Determining important parameters in
the spread of Malaria through the sensitivity analysis of a mathematical model. Bulletin of
Mathematical Biology, 70, 1272–1296. https://doi.org/10.1007/s11538-008-9299-0.

[8] I. Cooper, A. Mondal & C. G. Antonopoulos (2020). A SIR model assumption for the spread
of COVID-19 in different communities. Chaos, Solitons & Fractals, 139, Article ID: 110057.
https://doi.org/10.1016/j.chaos.2020.110057.

[9] H. I. Freedman, S. Ruan & M. Tang (1994). Uniform persistence and flows near a closed
positively invariant set. Journal of Dynamics and Differential Equations, 6, 583–600. https://doi.
org/10.1007/BF02218848.

[10] Z. Haque, M. Kamrujjaman, M. S. Alam & M. H. A. Biswas (2024). Marburg virus and
risk factor among infected population: A modeling study. Malaysian Journal of Mathematical
Sciences, 18(1), 141–165. https://doi.org/10.47836/mjms.18.1.09.

[11] J. M. Jonnalagadda (2022). Epidemic analysis and mathematical modelling of H1N1 (A)
with vaccination. Nonautonomous Dynamical Systems, 9(1), 1–10. https://doi.org/10.1515/
msds-2020-0143.

[12] C. W. Kanyiri, K. Mark & L. Luboobi (2018). Mathematical analysis of influenza A dynamics
in the emergence of drug resistance. Computational and Mathematical Methods in Medicine,
2018(1), Article ID: 2434560. https://doi.org/10.1155/2018/2434560.

437

https://doi.org/10.1016/j.aej.2023.05.011
https://doi.org/10.47836/mjms.16.3.08
https://doi.org/10.1016/j.chaos.2020.110072
https://doi.org/10.3934/mbe.2004.1.361
https://doi.org/10.3934/mbe.2004.1.361
https://www.cdc.gov/flu/about/viruses/types.htm
https://www.cdc.gov/flu/about/viruses/types.htm
https://www.cdc.gov/flu/about/?CDC_AAref_Val=https://www.cdc.gov/flu/about/keyfacts.htm
https://www.cdc.gov/flu/about/?CDC_AAref_Val=https://www.cdc.gov/flu/about/keyfacts.htm
https://doi.org/10.1007/s11538-008-9299-0
https://doi.org/10.1016/j.chaos.2020.110057
https://doi.org/10.1007/BF02218848
https://doi.org/10.1007/BF02218848
https://doi.org/10.47836/mjms.18.1.09
https://doi.org/10.1515/msds-2020-0143
https://doi.org/10.1515/msds-2020-0143
https://doi.org/10.1155/2018/2434560


A. Sirijampa et al. Malaysian J. Math. Sci. 19(2): 411–441(2025) 411 - 441

[13] F. Khondaker (2022). Optimal control analysis of influenza epidemic model. Applied Mathe-
matics, 13(10), 845–857. https://doi.org/10.4236/am.2022.1310053.

[14] Y. Kim, A. V. Barber & S. Lee (2020). Modeling influenza transmission dynamics with media
coverage data of the 2009 H1N1 outbreak in Korea. PLOS One, 15(6), e0232580. https://doi.
org/10.1371/journal.pone.0232580.

[15] J. P. La Salle (1976). The Stability of Dynamical Systems. CBMS-NSFRegional Conference Series
in Applied Mathematics. SIAM Society for Industrial and Applied Mathematics, Philadel-
phia. https://doi.org/10.1137/1.9781611970432.

[16] M. Y. Li, J. R. Graef, L. Wang & J. Karsai (1999). Global dynamics of a SEIR model with
varying total population size. Mathematical Biosciences, 160(2), 191–213. https://doi.org/10.
1016/S0025-5564(99)00030-9.

[17] M. Y. Li & J. S. Muldowney (1996). A geometric approach to global-stability prob-
lems. SIAM Journal on Mathematical Analysis, 27(4), 1070–1083. https://doi.org/10.1137/
S0036141094266449.

[18] M. Y. Li & J. S. Muldowney (2000). Dynamics of differential equations on invariant man-
ifolds. Journal of Differential Equations, 168(2), 295–320. https://doi.org/10.1006/jdeq.2000.
3888.

[19] S. Liu, Y. Bi & Y. Liu (2020). Modeling and dynamic analysis of tuberculosis in mainland
China from 1998 to 2017: The effect of DOTS strategy and further control. Theoretical Biology
and Medical Modelling, 17(1), 6. https://doi.org/10.1186/s12976-020-00124-9.

[20] G. Lu&Z. Lu (2017). Geometric approach to global asymptotic stability for the SEIRSmodels
in epidemiology. Nonlinear Analysis: Real World Applications, 36, 20–43. https://doi.org/10.
1016/j.nonrwa.2016.12.005.

[21] Macrotrends. Thailand life expectancy 1950-2023. https://www.macrotrends.net/countries/
THA/thailand/life-expectancy 2009. Accessed: 2023-12-25.

[22] A.Malik, M. Alkholief, F. M. Aldakheel, A. A. Khan, Z. Ahmad,W. Kamal, M. K. Gatasheh &
A. Alshamsan (2022). Sensitivity analysis of COVID-19 with quarantine and vaccination: A
fractal-fractional model. Alexandria Engineering Journal, 61(11), 8859–8874. https://doi.org/
10.1016/j.aej.2022.02.024.

[23] Ministry of Public Health, Department of Disease Control. Weekly disease forecast. https:
//ddc.moph.go.th/en/index.php 2009. Accessed: 2023-12-25.

[24] Ministry of PublicHealth, Department of Disease Control. Influenza (A). https://ddc.moph.
go.th/disease_detail.php?d=20 2022. Accessed: 2022-12-01.

[25] Ministry of Public Health, Department of Disease Control. Influenza, flu. https://ddc.moph.
go.th/disease_detail.php?d=13 2022. Accessed: 2024-13-05.

[26] Ministry of Public Health, Department of Disease Control. Weekly disease forecast. https:
//ddc.moph.go.th/doe/pagecontent.php?page=607&dept=doe 2023. Accessed: 2023-10-1.

[27] S. Mwalili, M. Kimathi, V. Ojiambo, D. Gathungu & R. Mbogo (2020). SEIR model for
COVID-19 dynamics incorporating the environment and social distancing. BMC Research
Notes, 13(1), Article ID: 352. https://doi.org/10.1186/s13104-020-05192-1.

[28] S. Ottaviano, M. Sensi & S. Sottile (2022). Global stability of sairs epidemicmodels. Nonlinear
Analysis: Real World Applications, 65, Article ID: 103501. https://doi.org/10.1016/j.nonrwa.
2021.103501.

438

https://doi.org/10.4236/am.2022.1310053
https://doi.org/10.1371/journal.pone.0232580
https://doi.org/10.1371/journal.pone.0232580
https://doi.org/10.1137/1.9781611970432
https://doi.org/10.1016/S0025-5564(99)00030-9
https://doi.org/10.1016/S0025-5564(99)00030-9
https://doi.org/10.1137/S0036141094266449
https://doi.org/10.1137/S0036141094266449
https://doi.org/10.1006/jdeq.2000.3888
https://doi.org/10.1006/jdeq.2000.3888
https://doi.org/10.1186/s12976-020-00124-9
https://doi.org/10.1016/j.nonrwa.2016.12.005
https://doi.org/10.1016/j.nonrwa.2016.12.005
https://www.macrotrends.net/countries/THA/thailand/life-expectancy
https://www.macrotrends.net/countries/THA/thailand/life-expectancy
https://doi.org/10.1016/j.aej.2022.02.024
https://doi.org/10.1016/j.aej.2022.02.024
https://ddc.moph.go.th/en/index.php
https://ddc.moph.go.th/en/index.php
https://ddc.moph.go.th/disease_detail.php?d=20
https://ddc.moph.go.th/disease_detail.php?d=20
https://ddc.moph.go.th/disease_detail.php?d=13
https://ddc.moph.go.th/disease_detail.php?d=13
https://ddc.moph.go.th/doe/pagecontent.php?page=607&dept=doe
https://ddc.moph.go.th/doe/pagecontent.php?page=607&dept=doe
https://doi.org/10.1186/s13104-020-05192-1
https://doi.org/10.1016/j.nonrwa.2021.103501
https://doi.org/10.1016/j.nonrwa.2021.103501


A. Sirijampa et al. Malaysian J. Math. Sci. 19(2): 411–441(2025) 411 - 441

[29] Pediatric Infectious Disease Society of Thailand. Influenza. https://www.pidst.or.th/A223.
html 2024. Accessed: 2024-05-20.

[30] Y. M. Rangkuti, Firmansyah & A. Landong (2022). Sensitivity analysis of SEIR epidemic
model of COVID-19 spread in Indonesia. In Journal of Physics: Conference Series, volume
2193 pp. Article ID: 012092. IOP Publishing. https://dx.doi.org/10.1088/1742-6596/2193/
1/012092.

[31] I. Ratti & P. Kalra (2023). Study of disease dynamics of co-infection of rotavirus andMalaria
with control strategies. Malaysian Journal of Mathematical Sciences, 17(2), 151–177. https:
//doi.org/10.47836/mjms.17.2.05.

[32] M. Samsuzzoha, M. Singh &D. Lucy (2013). Uncertainty and sensitivity analysis of the basic
reproduction number of a vaccinated epidemic model of influenza. Applied Mathematical
Modelling, 37(3), 903–915. https://doi.org/10.1016/j.apm.2012.03.029.

[33] X. Tan, L. Yuan, J. Zhou, Y. Zheng & F. Yang (2013). Modeling the initial transmission dy-
namics of influenza AH1N1 in Guangdong Province, China. International Journal of Infectious
Diseases, 17(7), e479–e484. https://doi.org/10.1016/j.ijid.2012.11.018.

[34] World Health Organization. Thailand (Statistics). https://www.who.int/countries/tha/
2019. Accessed: 2024-05-6.

[35] World Health Organization. Influenza A (H1N1) outbreak. https://www.who.int/
emergencies/situations/influenza-a-(h1n1)-outbreak 2024. Accessed: 2024-05-20.

439

https://www.pidst.or.th/A223.html
https://www.pidst.or.th/A223.html
https://dx.doi.org/10.1088/1742-6596/2193/1/012092
https://dx.doi.org/10.1088/1742-6596/2193/1/012092
https://doi.org/10.47836/mjms.17.2.05
https://doi.org/10.47836/mjms.17.2.05
https://doi.org/10.1016/j.apm.2012.03.029
https://doi.org/10.1016/j.ijid.2012.11.018
https://www.who.int/countries/tha/
https://www.who.int/emergencies/situations/influenza-a-(h1n1)-outbreak
https://www.who.int/emergencies/situations/influenza-a-(h1n1)-outbreak


A. Sirijampa et al. Malaysian J. Math. Sci. 19(2): 411–441(2025) 411 - 441

APPENDIX

A Sensitivity Indices of R0

Substitute k1 = µ + α + γI and k2 = µ + σ + γA in (8), the basic reproduction number R0 is
rewritten in form,

R0 =
pβI(µ+ γA + σ) + (1− p)

(
βIσ + βA(µ+ γI + α)

)
(µ+ γI + α)(µ+ γA + σ)

.

Thus, the sensitivity indices of R0 based on 8 parameters as show in following,

ΓR0

βI
=

βdI
(
pk2 + (1− p)σ

)
pβIk2 + (1− p)(βIσ + βAk1)

,

ΓR0

βA
=

(1− p)βAk1
pβIk2 + (1− p)(βIσ + βAk1)

,

ΓR0
γI

=
γI
(
(1− p)βAk1 − pβIk2 − (1− p)(βIσ + βAk1)

)
k1
(
pβIk2 + (1− p)(βIσ + βAk1)

) ,

ΓR0
γA

=
−γA(1− p)(βIσ + βAk1)

k2
(
pβIk2 + (1− p)(βIσ + βAk1)

) ,
ΓR0
σ =

σ
(
(1− p)βIk2 − (1− p)(βIσ + βAk1)

)
k2
(
pβIk2 + (1− p)(βIσ + βAk1)

) ,

ΓR0
p =

pk1k2
pβIk2 + (1− p)(βIσ + βAk1)

,

ΓR0
µ =

µ
((

pβI + (1− p)βA

)
k1k2 − (k1 + k2)

(
pβIk2 + (1− p)(βIσ + βAk1)

))
k1k2

(
pβIk2 + (1− p)(βIσ + βAk1)

) ,

ΓR0
α =

α
(
(1− p)βAk1 −

(
pβIk2 + (1− p)(βIσ + βAk1)

))
k1
(
pβIk2 + (1− p)(βIσ + βAk1)

) .

B Sensitivity Indices of E∗

The four state variables at the endemic equilibrium point (S, I, A,R) are denoted by x1, x2,
x3, x4 and the nine parameters (Π, βI , . . . , α) are notation by p1, p2, . . . , p9 and four equilibrium
equations of (6) by,

g1(x1, . . . , x4; p1, . . . , p9) = p1 −
(x2p2 + x3p3)x1

x1 + x2 + x3 + x4
− p4x1 = 0,

g2(x1, . . . , x4; p1, . . . , p9) =
p9(x2p2 + x3p3)x1

x1 + x2 + x3 + x4
+ p5x3 − (p4 + p6 + p7)x2 = 0,

g3(x1, . . . , x4; p1, . . . , p9) =
(1− p9)(x2p2 + x3p3)x1

x1 + x2 + x3 + x4
− (p4 + p5 + p8)x3 = 0,

g4(x1, . . . , x4; p1, . . . , p9) = x2p7 + x3p8 − x4p4 = 0.

(25)
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Following the condition ∂pl/∂pj = 0 when l ̸= j, full derivatives of (25) with respect to the nine
parameters, pj are shown in the form,

AXj = Kj ,

where

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 ; Xj =


∂x∗

1/∂pj
∂x∗

2/∂pj
∂x∗

3/∂pj
∂x∗

4/∂pj

 ; Kj =


− ∂g1/∂pj
− ∂g2/∂pj
− ∂g3/∂pj
− ∂g4/∂pj

 ,

a11 = − p2x2 + p3x3

x1 + x2 + x3 + x4
+

(p2x2 + p3x3)x1

(x1 + x2 + x3 + x4)
2 − p4,

a12 = − p2x1

x1 + x2 + x3 + x4
+

(p2x2 + p3x3)x1

(x1 + x2 + x3 + x4)
2 ,

a13 = − p3x1

x1 + x2 + x3 + x4
+

(p2x2 + p3x3)x1

(x1 + x2 + x3 + x4)
2 ,

a14 =
(p2x2 + p3x3)x1

(x1 + x2 + x3 + x4)
2 ,

a21 =
p9(p2x2 + p3x3)

x1 + x2 + x3 + x4
− p9(p2x2 + p3x3)x1

(x1 + x2 + x3 + x4)
2 ,

a22 =
p2p9x1

x1 + x2 + x3 + x4
− p9(p2x2 + p3x3)x1

(x1 + x2 + x3 + x4)
2 − p4 − p6 − p7,

a23 =
p3p9x1

x1 + x2 + x3 + x4
− p9(p2x2 + p3x3)x1

(x1 + x2 + x3 + x4)
2 + p5,

a24 = − p9(p2x2 + p3x3)x1

(x1 + x2 + x3 + x4)
2 ,

a31 =
(1− p9)(p2x2 + p3x3)

x1 + x2 + x3 + x4
− (1− p9)(p2x2 + p3x3)x1

(x1 + x2 + x3 + x4)
2 ,

a32 =
(1− p9)p2x1

x1 + x2 + x3 + x4
− (1− p9)(p2x2 + p3x3)x1

(x1 + x2 + x3 + x4)
2 ,

a33 =
(1− p9)p3x1

x1 + x2 + x3 + x4
− (1− p9)(p2x2 + p3x3)x1

(x1 + x2 + x3 + x4)
2 − p4 − p5 − p8,

a34 = − (1− p9)(p2x2 + p3x3)x1

(x1 + x2 + x3 + x4)
2 ,

a41 = 0, a42 = p7, a43 = p8, a44 = −p4.

Sensitivity indices of endemic equilibrium x∗
i to parameter pj is denoted by,

∂x∗
i

∂pj
· pj
x∗
i

,

where 1 ≤ i ≤ 4 and 1 ≤ j ≤ 9.
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